首页 > 职业鉴定考试
题目内容 (请给出正确答案)
[主观题]

设有n阶多项式f(x)=anxn+an-1xn-1+...+a0证明:若将它改写为f(x)=bn

设有n阶多项式f(x)=anxn+an-1xn-1+...+a0证明:若将它改写为f(x)=bn

设有n阶多项式f(x)=anxn+an-1xn-1+...+a0证明:若将它改写为

f(x)=bn(x-a)n+bn-1(x-a)n-1+...+b0,

设有n阶多项式f(x)=anxn+an-1xn-1+...+a0证明:若将它改写为f(x)=bn设有k=1,2...,n.f(0)(a)=f(a).

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设有n阶多项式f(x)=anxn+an-1xn-1+...+…”相关的问题
第1题
试在同一屏幕上作出y=|x|(-π≤x≤π)及它的k阶傅里叶多项式Fk(x)(k=1,2,.. ,6)的图形,观察y=F(x)逼近y=|x|的情况.
试在同一屏幕上作出y=|x|(-π≤x≤π)及它的k阶傅里叶多项式Fk(x)(k=1,2,.. ,6)的图形,观察y=F(x)逼近y=|x|的情况.

点击查看答案
第2题
设A是复数域C上一个n阶矩阵,λ1,λ2,···,λn是A的全部特征根(重根按重数计算)。(i)如

设A是复数域C上一个n阶矩阵,λ1,λ2,···,λn是A的全部特征根(重根按重数计算)。

(i)如果f(x)是C上任意一个次数大于零的多项式,那么f(λ1),f(λ2),···,f(λn)是f(A)的全部特征根;

(ii)如果A可逆,那么λi≠0,i=1,2,...,n,并且是A-1的全部特征根。

点击查看答案
第3题
令Fn[x]是某一数域F上全体次数≤n的多项式连同零多项式所组成的向量空间。令:。求出σ的最小多

令Fn[x]是某一数域F上全体次数≤n的多项式连同零多项式所组成的向量空间。令:。求出σ的最小多项式。

点击查看答案
第4题
证明:函数f(x)是n次多项式,a是方程f(x)=0的k(k≤m)重根f(a)=f´(a)==f(k-1)(a)=0,而f
证明:函数f(x)是n次多项式,a是方程f(x)=0的k(k≤m)重根f(a)=f´(a)==f(k-1)(a)=0,而f

证明:函数f(x)是n次多项式,a是方程f(x)=0的k(k≤m)重根f

(a)=f´(a)==f(k-1)(a)=0,而f(k)(a)≠0.

点击查看答案
第5题
设f(x)与g(x)是P[x]中两个多项式,证明:f(x与g(x)互素当且仪当f(x)与g(x)互素(其中n为正整数)

点击查看答案
第6题
设a1,a2,...,an是n个不同的数,而F(x)=(x-a1)(x-a2)...(x-an),b1

设a1,a2,...,an是n个不同的数,而F(x)=(x-a1)(x-a2)...(x-an),b1,b2,...,bn是任意n个数,显然适合条件L(ai)=bi,i=1,2,...,n。这称为拉格朗日(Lagrange)插值公式。

利用上面的公式求:

1)一个次数<4的多项式f(x),它适合条件:f(2)=3,f(3)=-1,f(4)=0,f(5)=2。

2)一个二次多项式f(x),它在x=0,2/π,π处与函数sinx有相同的值。

3)一个次数尽可能低的多项式f(x),使f(0)=1,f(1)=2,f(2)=5,f(3)=10。

点击查看答案
第7题
设a1,a2,...,an是n个不同的数,而F(x)=(x-a1)(x-a2)...(x-an)。证明:1)

设a1,a2,...,an是n个不同的数,而F(x)=(x-a1)(x-a2)...(x-an)。证明:

1)

2)任意多项式f(x)用F(x)除所得的余式为

点击查看答案
第8题
求多项式f(x)的全部零点,其中
求多项式f(x)的全部零点,其中

点击查看答案
第9题
设f(x)=a0+a1x+a2x2,A是n阶矩阵,定义f(A)=a0E+a1A+a2A2
设f(x)=a0+a1x+a2x2,A是n阶矩阵,定义f(A)=a0E+a1A+a2A2

如果f(x)=3-5x+x2,求f(A)。

点击查看答案
第10题
如果函数f(x)在点x处具有n-1阶导数,那么函数f(x)在点x的某一邻域内必定n阶可导。()
点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改