首页 > 职业资格考试
题目内容 (请给出正确答案)
[主观题]

数域F上n维向量空间V的一个线性变换σ叫作幂零的,如果存在一个正整数m使σm=θ。证明:(i)σ是幂零变换当且仅当它的特征多项式的根都是零;(ii)如果一个幂零变换σ可以对角化,那么σ一定是零变换。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“数域F上n维向量空间V的一个线性变换σ叫作幂零的,如果存在一…”相关的问题
第1题
设σ是数域F上n维向量空间V的一个线性变换。令∈F是σ的两两不同的本征值,Vλ是属于本征值的本

设σ是数域F上n维向量空间V的一个线性变换。令∈F是σ的两两不同的本征值,Vλ是属于本征值的本征子空间。证明,子空间的和是直和,并在σ之下不变。

点击查看答案
第2题
设σ是数域F上n维向量空间V的一个可以对角化的线性变换。令λ1,λ2,···,λt是σ的全部本
征值。证明,存在V的线性变换σ1,σ2,···,σt,使得

点击查看答案
第3题
设V是数域F上一个有限维向量空间。证明,对于V的线性变换σ来说,下列三个条件是等价的:(i)σ是满射;(ii)Ker(σ)={0};(iii)σ非奇异。当V不是有限维时,(i),(ii)是否等价?

点击查看答案
第4题
令S是数域F上向量空间V的一些线性变换所成的集合,V的一个子空间W如果在S中每一线性变换之下不变,那么就说W是S的一个不变子空间。如果S在V中没有非平凡的不变子空间,则是不可约的。设S不可约,而φ是V的一个线性变换,它与S中每一线性变换可交换。证明φ或者是零变换,或者是可逆变换。

点击查看答案
第5题
设V是数域P上n维线性空间,证明:V的与全体线性变换可以交换的线性变换是数乘变换。

点击查看答案
第6题
设W1,W2是数域F上向量空间V的两个子空间。α,β是V的两个向量,其中,α∈W2,但α∉W1,又β∉W2。证明:i)对于任意k∈F,β+kα∉W2;ii)至多有一个k∈F,使得β+kα∈W1

点击查看答案
第7题
设V是数域P上n(>0)维线性空间,则对任何m≥n,在V中存在向量α1,α2,...,αm使得其中任意n个均为V的基.

点击查看答案
第8题
n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。证明:(i)反对称变换关于V的

n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。

证明:

(i)反对称变换关于V的任意规范正交基的矩阵都是反对称的实矩阵(满足条件AT=-A的矩阵叫作反对称矩阵);

(ii)反之,如果线性变换σ关于V的某一规范正交基的矩阵是反对称的,那么σ一定是反对称线性变换;

(iii)反对称实矩阵的特征根或都是零,或者是纯虚数。

点击查看答案
第9题
设{α1,α2,···,αn}是F上n维向量空间V的一个基。A是F上一个nxs矩阵。令证明

设{α1,α2,···,αn}是F上n维向量空间V的一个基。A是F上一个nxs矩阵。令

证明

点击查看答案
第10题
设V是复数域上的n维线性空间,而线性变换在基ε1,ε2,...,εn下的矩阵是一若尔当块。证

设V是复数域上的n维线性空间,而线性变换在基ε1,ε2,...,εn下的矩阵是一若尔当块。证明:

1)V中包含ε1-子空间只有V自身;

2)V中任一非零-子空间都包含εn;

3)V不能分解成两个非平凡的-子空间的直和。

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改