你是否同意以下命题?并对你的判断给出简要说明。
(i)像横截面观测一样,我们可以假定大多数时间序列观测是独立分布的。
(ii)时间序列回归中的OLS估计量在前三个高斯-马尔科夫假定下是无偏的。
(iii)在多元回归中,一个含有趋势的变量不能用作因变量。
(iv)在使用年度时间序列观测时,不存在季节性问题。
考虑一个雇员水平的模型
其中无法观测变量f是在一个给定的企业i内,对每个雇员的“企业效应”。误差项vi,e是企业i中雇员e所独具的。诸如方程(8.28)中的综合误差就是ui,e=fi+ui,e.
(iv)讨论第(ii)部分对于利用企业层次的平均数据进行WLS估计的意义,其中第i次观测所用的权数就是通常的企业规模。
利用BARIUM.RAW中的数据。
(i)用前119次观测(即不包含1988年的最后12个月观测),估计线性趋势模型。这个回归的标准误是什么?
(ii)同样用除了最后12个月以外的所有数据,估计chnimp的一个AR(1)模型。把这个回归的标准误与第(i)部分中的标准误相比较。哪一个模型提供了更好的样本内拟合?
(iii)用第(i)和第(ii)部分中的模型计算1988年12个月的提前一期预测误差。(每个方法都应该得到12个预测误差。)计算并比较这两种方法的RMSE和MAE。就样本外提前一期预测而言,哪种方法效果更好?
(iv)在第(i)部分的回归中添加月度虚拟变量。它们是联合显著的吗?(当我们检验联合显著性时,不必担心误差中轻度的序列相关。)
利用CRIME4.RAW。
(i)使用固定效用法而不是差分法重新估计教材例13.9中关于犯罪的非观测效应模型。系数的符号和大小有什么明显变化?其统计显著性又怎样?
(ii)在数据集中添加每个工资变量的对数,再用固定效用法估计模型。添加这些变量如何影响第(i)部分有关司法变量的系数?
(iii)第(ii)部分的工资变量都带有所预期的符号吗?请解释。它们是联合显著的吗?