首页 > 职业鉴定考试
题目内容 (请给出正确答案)
[主观题]

证明:若函数项级数在[a,b]一致收敛于和函数S(x),且函数un(x)在[a,b]可积,则和函数S(x)在[

证明:若函数项级数在[a,b]一致收敛于和函数S(x),且函数un(x)在[a,b]可积,则和函数S(x)在[

证明:若函数项级数证明:若函数项级数在[a,b]一致收敛于和函数S(x),且函数un(x)在[a,b]可积,则和函数S在[a,b]一致收敛于和函数S(x),且证明:若函数项级数在[a,b]一致收敛于和函数S(x),且函数un(x)在[a,b]可积,则和函数S函数un(x)在[a,b]可积,则和函数S(x)在[a,b]也可积.

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“证明:若函数项级数在[a,b]一致收敛于和函数S(x),且函…”相关的问题
第1题
证明:若函数φn(x)在[a,b]单调,且级数与都绝对收敛,则函数项级数在[a,b]一致收敛.
证明:若函数φn(x)在[a,b]单调,且级数与都绝对收敛,则函数项级数在[a,b]一致收敛.

证明:若函数φn(x)在[a,b]单调,且级数都绝对收敛,则函数项级数在[a,b]一致收敛.

点击查看答案
第2题
证明:若f,g均为[-π,π]上可积函数,且它们的傅里叶级数在[-π,π]上分别一致收敛于f和g,则其中an

证明:若f,g均为[-π,π]上可积函数,且它们的傅里叶级数在[-π,π]上分别一致收敛于f和g,则

其中an,bn为f的傅里叶系数,ann为g的傅里叶系数.

点击查看答案
第3题
证明:函数项级数在区间[-a,a](a>0)一致收敛,在R非一致收敛.
证明:函数项级数在区间[-a,a](a>0)一致收敛,在R非一致收敛.

证明:函数项级数在区间[-a,a](a>0)一致收敛,在R非一致收敛.

点击查看答案
第4题
设f为上以2π为周期且具有二阶连续的导函数的,证明f的傅里叶级数在(-∞,+∞)上,一致收敛于f.

点击查看答案
第5题
证明:若连续函数列{f(x,y)}在有界闭区域R上一致收敛于函数f(x,y),则
证明:若连续函数列{f(x,y)}在有界闭区域R上一致收敛于函数f(x,y),则

点击查看答案
第6题
证明:若可积函数列fn(x)(n=1,2,...)在区间[a,b]上一致收敛于可积函数f(x),则它也平均收敛于f(x)[相反的结论不成立].

点击查看答案
第7题
证明:若以2π为周期的周期函数f(x)有连续的导数f'(x),则它的傅里叶级数在区间(-∞,+∞)内一致收敛于f(x).

点击查看答案
第8题
证明,若三角级数中系数an,bn满足关系M为常数,则上述三角级数收敛,且其和函数具有连续的导函数

证明,若三角级数

中系数an,bn满足关系

M为常数,则上述三角级数收敛,且其和函数具有连续的导函数.

点击查看答案
第9题
证明:若函数列{fn(x)}在区间Ii(i=1,2,..,n)都一致收敛,则函数列{fn(x)}在也一致收敛.
证明:若函数列{fn(x)}在区间Ii(i=1,2,..,n)都一致收敛,则函数列{fn(x)}在也一致收敛.

证明:若函数列{fn(x)}在区间Ii(i=1,2,..,n)都一致收敛,则函数

列{fn(x)}在也一致收敛.

点击查看答案
第10题
证明:若连续函数列{fn(x)}在[a,b]一致收敛于f(x),,xn∈[a,b],且xn→x(n→∞),则
证明:若连续函数列{fn(x)}在[a,b]一致收敛于f(x),,xn∈[a,b],且xn→x(n→∞),则

证明:若连续函数列{fn(x)}在[a,b]一致收敛于f(x),,xn∈[a,b],且xn→x(n→∞),则

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改